377 research outputs found

    Discovery of 21 New Changing-look AGNs in Northern Sky

    Full text link
    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08<z<0.580.08<z<0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide-field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in W1W1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than 3σ3\sigma confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors W1−W2W1-W2 become redder when the objects become brighter in the W1W1 band, possibly due to a stronger hot dust contribution in the W2W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.Comment: Accepted for publication in Ap

    Deep CFHT Y-band imaging of VVDS-F22 field: I. data products and photometric redshifts

    Full text link
    We present our deep YY-band imaging data of a two square degree field within the F22 region of the VIMOS VLT Deep Survey. The observations were conducted using the WIRCam instrument mounted at the Canada--France--Hawaii Telescope (CFHT). The total on-sky time was 9 hours, distributed uniformly over 18 tiles. The scientific goals of the project are to select faint quasar candidates at redshift z>2.2z>2.2, and constrain the photometric redshifts for quasars and galaxies. In this paper, we present the observation and the image reduction, as well as the photometric redshifts that we derived by combining our YY-band data with the CFHTLenS u∗g′r′i′z′u^*g'r'i'z' optical data and UKIDSS DXS JHKJHK near-infrared data. With JJ-band image as reference total ∼\sim80,000 galaxies are detected in the final mosaic down to YY-band 5σ5\sigma point source limiting depth of 22.86 mag. Compared with the ∼\sim3500 spectroscopic redshifts, our photometric redshifts for galaxies with z<1.5z<1.5 and i′≲24.0i'\lesssim24.0 mag have a small systematic offset of ∣Δz∣≲0.2|\Delta{z}|\lesssim0.2, 1σ\sigma scatter 0.03<σΔz<0.060.03<\sigma_{\Delta z} < 0.06, and less than 4.0% of catastrophic failures. We also compare to the CFHTLenS photometric redshifts, and find that ours are more reliable at z≳0.6z\gtrsim0.6 because of the inclusion of the near-infrared bands. In particular, including the YY-band data can improve the accuracy at z∼1.0−2.0z\sim 1.0-2.0 because the location of the 4000\AA-break is better constrained. The YY-band images, the multi-band photometry catalog and the photometric redshifts are released at \url{http://astro.pku.edu.cn/astro/data/DYI.html}.Comment: 16 pages, 12 figures, 4 tables. AJ accepted. Updated access to the data: https://zenodo.org/record/140003

    An Empirical Evaluation of Zero Resource Acoustic Unit Discovery

    Full text link
    Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an important avenue for unsupervised acoustic model training in a zero resource setting where expert-provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facilitate zero-resource AUD process, in this paper, we demonstrate acoustic feature representations can be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their correlated performance suggests that AUD evaluations are feasible using different alternative language resources when only a subset of these evaluation resources can be available in typical zero resource applications.Comment: 5 pages, 1 figure; Accepted for publication at ICASSP 201

    Controllable thioester-based hydrogen sulfide slow-releasing donors as cardioprotective agents

    Get PDF
    Hydrogen sulfide (H2S) is an important signaling molecule with promising protective effects in many physiological and pathological processes. However, the study of H2S has been impeded by the lack of appropriate H2S donors that could mimic its slow-releasing process in vivo. Herein, we report the rational design, synthesis, and biological evaluation of a series of thioester-based H2S donors. These cysteine-activated H2S donors release H2S in a slow and controllable manner. Most of the donors comprising an allyl moiety showed significant cytoprotective effects in H9c2 cellular models of oxidative damage. The most potent donor 5e decreased the mitochondrial membrane potential (MMP) loss and lactate dehydrogenase (LDH) release in H2O2-stimulated H9c2 cells. More importantly, donor 5e exhibited a potent cardioprotective effect in an in vivo myocardial infarction (MI) mouse model by reducing myocardial infarct size and cardiomyocyte apoptosis. Taken together, our studies demonstrated that these new allyl thioesters are potential cardioprotective agents by releasing H2S

    Synchronization of Developmental Processes and Defense Signaling by Growth Regulating Transcription Factors

    Get PDF
    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways

    Improving Offline-to-Online Reinforcement Learning with Q-Ensembles

    Full text link
    Offline reinforcement learning (RL) is a learning paradigm where an agent learns from a fixed dataset of experience. However, learning solely from a static dataset can limit the performance due to the lack of exploration. To overcome it, offline-to-online RL combines offline pre-training with online fine-tuning, which enables the agent to further refine its policy by interacting with the environment in real-time. Despite its benefits, existing offline-to-online RL methods suffer from performance degradation and slow improvement during the online phase. To tackle these challenges, we propose a novel framework called Ensemble-based Offline-to-Online (E2O) RL. By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance. Moreover, to expedite online performance enhancement, we appropriately loosen the pessimism of Q-value estimation and incorporate ensemble-based exploration mechanisms into our framework. Experimental results demonstrate that E2O can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods during online fine-tuning on a range of locomotion and navigation tasks, significantly outperforming existing offline-to-online RL methods

    Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean

    Get PDF
    Calcium ion is an intracellular messenger that plays a central role in signal transduction pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) signal network have shown different functions in the Ca2+ signaling process. In this work, we identified the entire soybean (Glycine max) CIPK gene family, which comprised 52 genes and divided into four subgroups (I to IV) based on phylogeny. The gene structural analysis separated these 52 genes into an intron-rich clade and an intron-poor clade. Chromosomal location analysis resulted in the identification of 22 duplicated blocks and six tandem duplication events. Phylogenetic classification of 193 CIPK proteins from representative plant species suggested that the intron-poor clade of CIPKs originated in seed plants. Analysis of global gene expression patterns of soybean CIPK family revealed that most intron-poor soybean CIPK genes are drought-inducible; a finding that was further confirmed using qRT-PCR. Our study provides a foundation for further functional analysis to reveal the roles that CIPKs and more specifically the intron-poor clade play in drought tolerance in soybean

    Efficient Cross-Lingual Transfer for Chinese Stable Diffusion with Images as Pivots

    Full text link
    Diffusion models have made impressive progress in text-to-image synthesis. However, training such large-scale models (e.g. Stable Diffusion), from scratch requires high computational costs and massive high-quality text-image pairs, which becomes unaffordable in other languages. To handle this challenge, we propose IAP, a simple but effective method to transfer English Stable Diffusion into Chinese. IAP optimizes only a separate Chinese text encoder with all other parameters fixed to align Chinese semantics space to the English one in CLIP. To achieve this, we innovatively treat images as pivots and minimize the distance of attentive features produced from cross-attention between images and each language respectively. In this way, IAP establishes connections of Chinese, English and visual semantics in CLIP's embedding space efficiently, advancing the quality of the generated image with direct Chinese prompts. Experimental results show that our method outperforms several strong Chinese diffusion models with only 5%~10% training data
    • …
    corecore